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Abstract-Interface models which relate tractions to displacement jumps and which can be used to
simulate fracture processes are formulated. The formulation and identification of the models
are pursued with particular reference to the analysis of composite delamination. The difficulties
concerning the use of interface models in numerical analyses are discussed. A numerical integration
method for the interface constitutive laws is proposed, and the related consistent tangent modulus
is derived. An algorithm for the structural analysis in the presence of softening interfaces which
makes use of a local control condition is presented.

1. INTRODUCTION

The loss of cohesion between two solids can be thought of as the process in which the
possibility to transfer tension and shear stresses between the two solids progressively
diminishes. This damage phenomenon can be modelled by the introduction of interface
constitutive laws in which the traction vector on the separation surface between the two
solids is related to their reciprocal movement with respect to a reference configuration, i.e.
to the displacement jump vector. For instance, if the stress component normal to the
separation surface is a decreasing function of the distance between the two solids, the loss
of cohesion will be complete when the stress reaches the zero for a critical distance.

Interface constitutive laws have been mainly used in the study of contact problems,
fracture mechanics for concrete [see e.g. Hillerborg et al. (1976), Baiant and Oh (1983),
Cedolin et al. (1987), Carpinteri (1989) and Maier et al. (1991,1992)], adhesive films [among
recent works on this subject see e.g. Fremond (1987) and Lemaitre (1992)], homogenized
behaviour ofcomposites [see e.g. Lene (1986) and Hashin (1990)] and ofcomposite delamin
ation. Their use and in particular the existence of a displacement discontinuity can be
motivated in different ways, depending on the application envisaged.

In this paper interface models will be discussed in particular with reference to composite
delamination, i.e. the phenomenon of separation ofadjacent layers in laminated composites
due to edge effects, impacts and other causes which originate important interfacial stresses
[see e.g. Bottega (1983), Garg (1988) and Pagano (1989), and the references there listed].

The use of interface models in the analysis of composite delamination has been pro
posed by Allix (1989), and developed in Allix et al. (1991), Ladeveze (1992), Allix and
Ladeveze (1992) and DaudeviIle (1992). In these works the schematization of the laminated
composite proposed by Ladeveze (1986) is used. The laminated composite is conceived as
an assemblage oftwo main constituents: the fibre-reinforced layer and separation interfaces.
The attribution to these of an interface constitutive law allows the modelling of delamin
ation, i.e. of progressive loss of cohesion between adjacent layers. Use of the same kind of
idealization has been made in other recent works (Schellekens and de Borst, 1991, 1992).

The identification of interface models for composite delamination is complicated by
the fact that experiments cannot be directly done on the interface, hence indirect information
must be derived from tests. The kind ofmodel which has to be used is generally characterized
by anisotropy, softening and irreversibility. These features originate the main difficulties
connected with the use of interface models in numerical analyses. As is well known,
numerical analyses in the presence of softening deserve special care. Nonuniqueness of
solutions and localization problems can completely falsify the results. Moreover, the local
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softening behaviour can result in a global softening and also in snap-back phenomena that
cannot be tackled with a standard step-by-step algorithm.

The purpose of this paper is to generalize the formulation of already existing interface
models and to overcome some of the difficulties related to their use. In particular the
problems of model identification, of numerical integration of the interface laws and of
global analyses in the presence of softening interfaces are treated.

An outline of the paper is as follows. In Section 2 a formulation of a quite general
class of interface models is presented. The models can be considered as particular mani
festations of anisotropic softening plasticity, damage mechanics and coupled elasto
plasticity-damage theories [see e.g. Ladeveze (1983, 1986), Lemaitre (1984), Lemaitre and
Chaboche (1985), Simo and Ju (1987) and Ju (1989)]. In Section 3 a discussion on energetic
aspects concerning the process of delamination as modelled by an interface law is made.
This permits the establishment of a clear link with classical Fracture Mechanics concepts.
In Section 4 results of the discussion of Section 3 are used to propose an identification
procedure for the models. Section 5 is dedicated to the analysis of the numerical integration
of interface constitutive laws with the backward difference scheme. The consistent tangent
operator is also given for a particular class of models [on this subject see e.g. Simo and
Taylor (1985), Benallal et al. (1988), Perego (1988) and Comi et al. (1991)]. In Section 6
an algorithm for the solution of a boundary value problem for a solid which contains
softening interfaces is presented. The algorithm makes use of an idea proposed by Chen
and Schreyer (1990). Numerical examples are given in Section 7.

2. INTERFACE MODELS

Consider a surface r which separates two solids or divides a solid in two parts. The
two parts will be called 0+ and 0_. Fix a point P on the surface r and introduce a local
right handed reference frame 1, 2, 3 centred on P. Axis 3 is made coincident with the normal
on r in P directed toward 0+ (Fig. 1). t is the three-components vector of tractions in P;
the components of t will be considered positive if directed as axes 1, 2, 3. Suppose that
displacement discontinuities can develop at point P belonging to surface r. The displace
ment vector u of point P thought to belong to 0+ or 0_ will be denoted as u+ and u ,
respectively. Denote by the symbol [u] the displacement jump vector in P, i.e. [u] == u+ - U-.

An interface constitutive law is here defined as a relation between t and [u], i.e.

t = A ([u], x). (1)

In eqn (1) A is an unspecified operator which connects displacement jumps to surface
tractions in point P; x is a vector of internal variables.

When applied to the modelling of delamination in stratified composites, interface
models have to possess the following main features: (a) the possibility of modelling a
decrease in resistance (softening) until a critical level [u]e is reached and the layers are
completely separated; (b) the anisotropy of the response; (c) the difference in tensile and
compressive behaviour for the direction normal to the surface (unilateral effect). Other
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Fig. I. Discontinuity interface r and local reference frame.
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features which are important but not crucial can be introduced in the model: a decrease in
stiffness, the existence of irreversible displacement discontinuities, time dependent behaviour.
Another point to consider is the possible dependence of the interface behaviour on the
orientation of fibers of adjacent layers (Laksimi et al., 1991). A first way to take this into
account is to define a local reference system of principal directions which depends on the
orientation of fibres of adjacent layers (Allix, 1989). For instance, define a reference frame
by taking as the principal direction I (or 2) the bisectrix of the angle formed by the direction
of fibers of adjacent layers.

The development of displacement discontinuities, in the present context of composite
delamination, corresponds to the development ofa fracture. The definitions usually assumed
in Fracture Mechanics of different modes can therefore also be used with reference to an
interface law. Throughout the paper mode I (opening mode) will correspond to nonzero
displacement discontinuities in direction 3 orthogonal to the interface, mode II and mode
III (shearing and tearing modes) will be conventionally attributed to directions I and 2,
respectively.

A general class ofinterface models, which generalizes the models proposed for delamin
ation by Schellekens and de Borst (1991, 1992), and more particularly by Allix (1989), Allix
and Ladeveze (1992), Daudeville (1992) and Ladeveze (1992) is expressed by the following
relations, in which indices I, 2, 3, refer to local principal directions of interface:

[u] = [u]e+ [u]P, (2)

E = 0(1- d,)K, [ud e2 + 1(1 -dz)Kz[uz]e
2
+ 1(1 -d3)Kj <[U3]e)~+ !K3 <[U3r)~ + 'I'(1/)},

(3)

oE
t; = o[u;]e i = 1,2,3,

oE oE
Y; = - ad; i = 1,2,3, X = 01/ == h(1/), (4)

F = F(t;, Y;, X; d;), G = G(t;, Y;, X; d;),

d; = I;(t;, Y;, X; d;))' i = 1,2, 3,

F ~ 0, F). = 0, ). ~ 0.

(5)

(6)

(7)

(8)

Equation (2) expresses the displacement discontinuities [u] as the sum of an elastic
(reversible) part [u]e and a plastic (irreversible) one [u]P. In eqn (3) the free energy per unit
surface E in isothermal conditions is given by the sum of two contributions. The first one
is the elastic deformation energy per unit surface (the first four addends); d; are damage
variables, different for each direction 1,2, 3 to take into account the anisotropy of damage
evolution. K; are interface stiffnesses with the dimension of a force over a length cube. The
symbols <•)+ and <•)_denote the positive and negative parts of •. These are introduced
in relation (3) in order to take into account the unilateral effect. The second contribution
'1'(1/) of the free energy represents an energy per unit surface which depends on micro
mechanical rearrangements, 'I' is a function of the so-called kinematic internal variable 1/
here assumed to be a scalar. Relations (4a, b, c) represent equations of state which define
the variables conjugate to [u;]e, d; and 1/, respectively. Equation (4a) defines the tractions t;

as functions of elastic displacement discontinuities and damage variables. Notice that, in
the principal reference frame here considered, t; depends on the corresponding d; and [u;]e
only; notice also that a coupling between shear and normal tractions is never considered
in the linear elastic relations even in nonprincipal reference frames. Equation (4b) defines
the variables Y;, conjugated to d;, which have the dimension of an energy per unit surface.
In eqn (4c) the static internal variable X is defined as conjugated to 1'/. Equations (5a) and
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(5b) define the damage-yielding function F and the plastic potential G, respectively. The
nonassociated evolution laws for plastic displacement discontinuities [u]P and the kinematic
internal variable I] are given by eqns (6a) and (6b), respectively, Ais the plastic-damage
multiplier. Equation (7) gives the evolution of damage variables. The loading-unloading
conditions are given by relations (8). Note that, for the sake of simplicity, a single criterion
Fhas been introduced for the development of damage and plasticity.

Relations (2)-(8) can be considered as the interface version of an elastic-plastic
damage constitutive model with nonassociated evolution laws for plastic variables and
damage. The class of interface constitutive laws introduced possesses the main character
istics necessary to the modelling ofcomposite delamination: anisotropic damage, unilateral
effect, irreversible displacement discontinuities. Three noteworthy specializations will be
discussed in the remaining part of this section.

2.1. Model a : elastic-pLastic-softening
Consider the special choice:

(9)

In this case the damage variables d; are identically zero during the whole evolution,
hence variables Yj disappear too. The following expressions for the yielding function F and
plastic potential G are chosen:

(10)

(II)

In the above equations f and 9 are positive convex and differentiable functions;
f(O) = g(O) = 0; a;, b;, i = I, 2, 3 and a~ are non-negative model parameters.

Relations (2), (3) with dj = 0, (4a, c), (6), (8), (10), (II) describe an elastic-plastic
nonassociated class of models for the interface with isotropic hardening or softening. The
behaviour is hardening for increasing function h(I]), softening for decreasing h(I]).

Consider the mechanical dissipation w per unit surface:

3 3

W = Itj[Ui] E= Iti[U;]P-X~ ~ (g(t;)-X);':.
I' I'

(12)

Relation (I2c) has been obtained by making use of: the evolution laws for [u;]P and r"
[eqns (6) and (II)], convexity and differentiability of9 with respect to variables ti , the fact
thatg(O) = 0. Notice that when a4 0, 9 == f, and ai hi, i = 1,2, 3 (associated behaviour),
relation (l2c) together with (8) imply the non-negativeness of w, thus satisfying a fun
damental requirement of the second law of thermodynamics. In the case of nonassociated
behaviour (a~ =/: 0; 9 =/: f; a; =/: b;), the non-negativeness of w is straightforwardly proved
only for negative X(I]) = h(1'f), that is for ever decreasing resistance (softening) after yielding.
In the general case of nonassociated law and static internal variable also positive, the
requirement of positiveness of w imposes some constraints on the choice of functions g, f
and h(r/).

This model can take into account the decrease in resistance, the anisotropy, the
unilateral effect and the presence of irreversible displacement discontinuities. The unilateral
effect is introduced in such a way that pure compression in direction 3 does not cause
yielding. Finally the linear term a~t3 in the yielding function F [eqn (10)] delay yielding in
the case of compression and accelerates it in the case of tension.

A particular member of the class of elastic-plastic-softening models here introduced
will be considered for further discussion and numerical examples of Section 7 :
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h(11) = h(l) = -hl = -l, f(.) = fl, g(.) = fl·
2783

(13)

This choice is motivated by the following remarks.

(i) The yielding criterion here introduced coincides with delamination criteria which
can be found in the literature [e.g. Brewer and Lagace (1988)].

(ii) Equations (13a, b, c) allow the interpretation ofthe plastic multiplier 1 as a variable
describing the degradation which varies in the interval [0, I}. When 1 reaches the value 1
(X = -1) the elastic domain is reduced to zero volume and the point can be considered
completely damaged.

(iii) The nonassociativity, i.e. the choice a; =1= b;, i = 1,2, 3, allows the independent
introduction of different Fracture Energies Geb Gel!> Gell !> as will be clear in Section 3 [eqn
(44)].

(iv) A model similar to this one, but with associated flow rule, and a different interpre
tation of irreversible displacement discontinuities, has been used by Schellekens and de
Borst (1991, 1992). The monodimensional version which takes into account the opening
mode only (tractions in direction 3), has been used in Fracture Mechanics of concrete with
the so called discrete crack models, for instance in Bazant and Oh (1983).

2.2. Model b: elastic-damage
Consider the special choice:

1f(11) :;: 0, G == O. (14)

With the above choice the static and kinematic internal variables and the plastic
displacement discontinuities reduce to zero. Hence an anisotropic elastic-damage model is
obtained, in which the evolution of damage variables is nonassociated to damage function
F. For the expression of damage function F and the evolution laws of damage variables d;
the following choice is made:

(15)

(16)

In eqn (15) a;', i = 1, 2, 3 are non-negative model parameters; function f is positive,
convex and differentiable; f(O) = O. The elastic-damage model in point is therefore defined
by relations (3) with If == 0, (4a, b), (8), (15) and (16). Notice that, due to eqns (15), (16)
and the loading-unloading conditions (8), the evolution law for damage variables can be
equivalently expressed as follows:

where t is the current instant in time. The following restrictions determine the chosen
damage evolution law:

(0) 0 0 ( -) dL;(_f) :;:; 0
L; =, ~ L; Y ~ 1, dY? i = 1,2,3, (18)

(19)

In view of the above equations (17) the evolution of the damage variables is governed
by the choice of functions L;(f) subjected to conditions (18). Relation (19) implies that
when complete damage is reached for mode I (opening mode), also in modes II and III the
interface is considered to be completely damaged.

$AS 30120-E
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Consider the mechanical dissipation w per unit surface:

3 3

W = Lt;[u;]-E' = LY;d;.
I' I'

(20)

The dissipation w is never negative due to the expression of Y; [eqn (4b)], the restrictions
imposed on functions L;(Y) [eqn (18)] and the non-negativeness of ;:.

The model in point takes into account the anisotropy, the decrease in resistance and
elastic stiffness, the unilateral effect. The three damage variables evolve at the same time,
but the velocity of evolution can be independently governed by the choice of functions
L;( Y). The quantity chosen to govern the damage criterion is a norm of energy variables
associated to damage. The initial damage level is governed by parameters a;', i = 1, 2,3.

A particular choice which will be used for further discussion and for numerical examples
of Section 7 is the following:

(21)

In eqn (2Ib), "y;' are non-negative model parameters. The following remarks motivate
the above choice:

(i) As for model a, the elastic domain in the space of tractions t; coincides with
delamination criteria in interlaminar stresses, frequently used in the literature. This can be
seen by making use of eqns (4b) and the inverse of (4a) in order to substitute the variables
Y; in eqn (15).

(ii) A model similar to this one was recently used in the analysis ofcomposite delamin
ation by Allix (1989), Allix and Ladeveze (1992), Ladeveze (1992) and Daudeville (1992).

2.3. Model c: elastic-plastic-damage
Make the particular choices:

(22a)

(22b)

Function f is subjected to the same restrictions as functions f for cases a and b; a;"
are non-negative model parameters. With the above choices, the general model expressed
by relations (2)-(8) reduces to an elastic-plastic-damage model for interface with evolution
of plastic displacement discontinuities and kinematic internal variables both associated to
the yielding-damage function F. In the present case function 'P(I]) which governs the
hardening is supposed to be convex of variable I] which, in turn, coincides with A. in view
of eqns (6b) and (22a). The evolution of damage variables is still assumed not associated
and is specified by the following relations:

d; = I;(x)ic = I;*(xh i = 1,2,3. (23)

By taking into account eqns (22), (23) and (8), the evolution law for damage variables
can be equivalently expressed as follows:

The above expression for the evolution of damage variables coincides formally with
eqns (17) if one identifies variable X with Y. Restrictions (18) and (19) also hold in this
case.
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Consider the mechanical dissipation w per unit surface:
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3 3 3 3

W = Lt;[u;] -E = Lt;[uf)-Xti+ L Y;d; ~ (I(t;; d;)-X)A+ L Y;d;. (25)
I' I' I' I'

Inequality (25c) has been obtained by taking into account the evolution equations
(6a, b), by considering the expression (22) of F = G, and by making use of the convexity
and differentiability offwith respect to t; and of the fact that f(O) = O. The non-negativeness
of w follows from relations (25c), (22a), (8a, b, c) and from the non-negativeness of the
dissipation term due to damage.

The following particular choice is considered for further discussion and numerical
examples of Section 7:

h(17) = h(A) = hA, f(+) = fl, L;(X) = l-jl-2y/"X i = 1,2,3, (26)

where y;" are non-negative model parameters.
The particular evolution law for damage variables given by eqns (24) and (26d) is such

that a critical state is reached for d; = I with zero tractions and a finite value ofdisplacement
discontinuities [u;]c. This fact is not in general guaranteed for arbitrary choices of functions
L;(X). For instance choice (2Ib) made for model b (with Y substituted by X) would imply
infinite displacement discontinuities for d; = 1.

2.4. Remarks
(i) The main differences between the classes of models a, band c can be remarked for

cyclic loading. In that case, in fact, irreversible displacement discontinuities and stiffness
degradation playa crucial role. It appears that the more adequate model in these situations
is one of kind c.

(ii) The three classes of models introduced, with the special choices made for the shape
of the elastic domain and for the evolution laws of damage variables, can be formally
represented with a unique set of equations, in which variables have to be adequately
interpreted depending on the model chosen. The set of equations is given by eqns (2), (8)
and the following:

(28)

(29a)

(29b)

(30)

• p _ b; _ti_.

[uJ - (I-d;)2~A i = 1,2, (31)

d; = L;(X) = L;(h(A)) i = 1,2,3. (32)

Scalar variables Ya and Yb are defined in eqns (29) for notation convenience. Classes
of models a, b, c are obtained from the above equations by setting respectively:
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model a: L;(x) == 0, a; a'l' bi = b'l i = 1,2,3, h(A) = -A;

model b:
a~'

b; = 0, ai = 1 i = 1,2,3, a4 = 0, h(A) = A, Li(X) = y;'X 1,2,3,

model c: ai = bi = a;' ii, 2,3, a4 = 0, L;(X) I - ji--.-2y;"X i = 1,2,3.

3. DECOHESION PROCESSES AND INTERFACE MODELS

The interface models introduced in Section 2 have as their main common characteristic
the fact that they simulate the process of decohesion between two solids, in particular in
the case of delamination in laminated composites. Mainly to the purpose of model identi
fication, it is important to analyse some energetic aspects of a decohesion process as
described by an interface model.

Consider an infinitesimal element of surface df centred on point P (Fig. I). A de
cohesion process (DP) is here defined as a history of displacement discontinuities [u] in
point P which lead to a complete decohesion ofsurface df between the two solids in contact,
i.e. to complete separation. Given an interface constitutive law and a DP, the work necessary
to separate the two solids is computed by:

(33)

In eqn (33) Wd is the work of decohesion per unit surface; in general Wd is a function
of the material, i.e. of the interface model, and of the DP followed.

Three particular DPs are chosen to characterize the loss of cohesion of two solids.
These three processes result by imposing an increasing displacement discontinuity of the
same sign only in directions I, 2, 3 respectively (modes II, III, I). The resulting values of
Wd will be called Wdlb Wdllb Wdl :

For the particular choices made for interface models a, b, c of Section 2, the DP in
uniaxial situations always ends when a finite critical level [u;]c ofdisplacement discontinuities
is reached. Moreover, integrals in eqns (34) do not change if elastic unloading and reloading
are performed during the uniaxial DP. Wdb Wdlb Wdlll can therefore be rewritten as:

(35)

From eqns (35) it follows that the work of decohesion per unit surface Wd in uniaxial
situations is represented by the areas under the uniaxial curves t; - [u;] (Fig. 2). For mixed
modes I, II, III, it is in general not possible to derive energetic quantities Wd expressed in
terms of Wdb Wdlb Wdlll'

Fig. 2. Uniaxial response and work of decohesion per unit surface.
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Consider now a phenomenon ofloss of cohesion which involves a finite surface r. The
work Wd necessary to separate the two solids is in this case equal to:

Wd = rWd dr = r r (t. t; d[U;]) dr.
Jr Jr JDP l'

(36)

In general Wd depends on the material (the interface model) and the DPs which are
generally different at every point of the surface r. Wd depends therefore on the distribution
of displacement discontinuities [u] on r. If at every point of the surface r the DP is the
same, the work Wd can be expressed as :

(37)

In the above very particular case it is therefore possible to directly correlate the energy
of a process of loss of cohesion that involves a finite surface to a quantity depending only
on the interface model and a specific DP. In order to identify the parameters of an interface
model by measure of energetic quantities, one should obtain tests verifying the above
situation. In particular if the DP in every point of the surface r coincides with one of the
simple processes defined previously (modes I, II, III) the work Wd is given by:

(38)

Fracture Mechanics tests may be used to identify the interface models. To this purpose
the fracture test must satisfy two main conditions. First the process zone at the crack tip,
in which the majority of damage phenomena are concentrated, must translate without
modifying its shape, i.e. a steady-state situation for crack propagation must be attained;
in this case in fact all the points belonging at some instant to the process zone will undergo
the same DP. Second the process zone must be such that its schematization as a surface at
crack tip is reasonable (Fig. 3). If this is true the interface model can be used to describe
the process zone. In this kind of fracture test the measured energy per unit surface necessary
to propagate a crack of a finite length (finite because it is measured in real tests), i.e. the
Critical Energy Release Rate Go can then be directly correlated to Wd :

Wd i 3Gc = - = It; d[u;]
r DP I'

(39)

and therefore directly correlated to the interface model. In particular if the crack propagates
in pure modes I, II or III, one can write:

process zone

(a)

(b)

Fig. 3. (a) Process zone at crack tip. (b) Planar schematization for the process zone.
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(40)

3.1. Remarks
(i) As already mentioned, relations (39) and (40) hold if the fracturing process is such

that the process zone translates without modification (steady-state fracture propagation)
and the damage phenomena of the process zone are concentrated on a surface at the crack
tip. The first hypothesis corresponds to situations in which the diagram of the Energy
Release Rate G versus the crack length [fracture resistance curve, Broek (1989)] reaches a
stationary value, i.e. G does not vary with crack length. The second hypothesis is not
unusual in Fracture Mechanics, in fact it is implicitely assumed when fracture propagation
is modelled through the use of interface models [see e.g. Bazant and Oh (1983)].

(ii) By considering the established connection between the Critical Energy Release
Rate Ge and the energy necessary for a decohesion process [eqns (36) and (39)], it is seen
that in general Ge cannot be simply expressed, for coupled modes, as a simple function of
parameters Ge" Gel" Gem; Gealso depends on the DP, i.e. on the path followed in the space
of displacement discontinuities. It also appears that in general Ge will depend both on
material and the distribution ofDP in the process zone [eqn (36)]. Hence, in the framework
of the present schematization, Ge cannot in general be simply interpreted as a material
parameter.

(iii) In the case of linear elastic Fracture Mechanics, the process zone can be thought
ofas reduced to a point at the crack tip. Hence the Critical Energy Release Rate is rigorously
a material parameter for a given process of fracture.

4. IDENTIFICATION OF INTERFACE MODELS FOR THE ANALYSIS
OF COMPOSITE DELAMINAnON

One of the major drawbacks for the use of interface models in the analysis ofcomposite
delamination is the difficulty in identifying model parameters.

In the literature a number ofdelamination tests have been proposed [see e.g. Donaldson
(1988), Pagano (1989) and Suo et al. (1992)], the most popular are perhaps the double
cantilever beam (DCB), the end notch flexure (ENF) and the split cantilever beam (SCB)
tests, for delamination in modes I, II and III respectively (Fig. 4). In these tests the
hypotheses of remark (i) in Section 3 are reasonably satisfied, other tests proposed (Suo et
al., 1992) can probably more exactly satisfy the conditions but are still not largely used.
Due to the popularity of DCB, ENF and SCB tests, they will be taken here as a reference
to compute parameters Gel, Gel! and Gelll . It is worth noticing that parameters Ge" Gell ,
Gelll are always derived by making some hypotheses on the global behaviour of the specimen
used in the test. Generally a hypothesis of global elastic behaviour for fixed crack length is
made; for instance in the DCB test when use is made of the compliance method to compute
Gel' Besides the three crucial parameters Ge" Gel! and Gem, other information could be used
in order to identify interface models, as will be suggested in Section 4.1.

It is worth noting that the choice of interface elastic stiffnesses K i does not appear to
be crucial for delamination analysis. These parameters can be chosen by applying the
method used in Lene (1986), Allix (1989) and Daudeville (1992) where the interface is
interpreted as an equivalent homogeneous layer with very small thickness. The elastic
stiffness parameters are in this case given by :

2G I3
K,~--,

e

E
K + ~-2

1= .
e

(41)

In eqns (41) e is the fictitious thickness attributed to the interface, e.g. a fraction of
layer thickness; G 13, G23 and E 3 are shear and Young moduli and can be chosen equal to
the same parameters of a layer of the laminated composite supposed homogeneous.
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(a) DeB

(b) ENF

(c) SCB

Fig. 4. Delamination test specimens. (a) Mode I: Double Cantilever Beam. (b) Mode II: End
Notched Flexure. (c) Mode III: Split Cantilever Beam.
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4.1. Identification of three particular interface models
For the models a, band c presented in Section 2, an identification procedure is now

proposed. For the three cases treated, the elastic parameters Ki are supposed to be chosen
as suggested above. The special choices (13), (21) and (26) are assumed, hence reference
can be made to the set of equations (2), (8) and (27)-(32) with specializations regarding
each model.

(a) Elastic-plastic-softening model. For identification purposes it is useful to study the
uniaxial behaviour. In the particular case treated here and with the further specialization
of a4 = 0 the monodimensional behaviour under monotonically increasing displacement
discontinuity is given by the following relations for i = I, 2, 3 :

(42a)

(42b)

where no summation on repeated indices is implied. Recall that parameter h is assumed to
be equal to unity [eqn (Be)].

The identification of parameters aj and bi of the model can be made as described below.

-Yielding function parameters ai'

The values of tensile strength t30 and shear strengths t 10, t 20 of the homogenized layer or
of the matrix can be used to impose the maximum on the uniaxial response in terms of
tractions, thus obtaining:
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1 .
ai = -2 1 = 1,2,3.

tiO
(43)

-Plastic potential parameters hi'
Relations (35) and (40) can be used. The integral in eqns (35) can in this case be easily
computed being the monodimensional behaviour given by a bilinear law. It is straight
forward to obtain:

(44)

(b) Elastic-damage model. Consider again the monodimensional behaviour under
monotonically increasing displacement discontinuity. By exploiting the relations of the
model in the uniaxial case for i = 1,2,3, one still obtains in the elastic range eqn (42a),
while for the nonlinear damage range:

where superscript 1/ on Yi has been dropped for simplicity.
Note that for Yt > I the maximum of the uniaxial curve corresponds to the elastic limit,

while for Yi < I the maximum is reached in the post-elastic range. The identification of
parameters ai and Yi can be made as suggested below:

-Damage function parameters ai'
The value of tractions corresponding to the end of linear range could be chosen equal to
tOi by making use ofeqn (43). tOt could be obtained e.g. by acoustic emission measurements.

--Damage evolution parameters Yi'
Relations (35) and (40) can be used. The computation of integrals in eqn (35) gives:

(46)

Relations (46) can be used to compute Yi once the values of Critical Energy Release
Rates are known and values of Kt and at are fixed. The inversion of eqns (46) in terms of
Yi gives rise to a second order equation which has in general a negative root not to be
considered.

(c) Elastic-plastic-damage model. As in the preceding examples consider first the
uniaxial behaviour under monotonically increasing displacement discontinuity. By reducing
the equations ofthe model to the uniaxial case, the following parametric form ofthe relation
between traction and displacement discontinuity in the nonlinear range can be obtained for
i = 1,2,3 (superscript III on Yt dropped for simplicity):

1
O~ X~-2 = XC'

Yt
(47)

In the elastic range eqn (42a) still holds. Notice that when h = 1, for Yi> I the
maximum ofthe uniaxial curve corresponds to the elastic limit, while forYi < I the maximum
is reached in the post-elastic range. A possible identification procedure for parameters at>
hand Yi is suggested below:
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-Parameters a;.
They can be identified as done in example b.

-Parameter h.
This parameter, which governs the hardening behaviour, should in principle be derived
from information concerning the plastic response of the interface. Since this information is
not available, one can use information concerning the plastic response of the matrix
idealizing the interface as a small thickness layer made of the same material used for the
matrix. For simplicity in the following of this paper it will be assumed h 1.

-Parameters y;.
As in examples a and b relations (35) and (40) can be used. The integral in eqn (35) can be
computed by making use of parametric relations (42a) and (47), it results in:

1 (I I 1 ) 1 Iw·=- -+-+- +--+-
I K;a; 2 15Yl 3/'; 8/'lh 2/';h'

(48a)

(48b,c,d)

Relations (48) can be used to compute y; once K;, a; and h are fixed. One obtains a
second order equation in Yh the positive root is the correct one.

5. NUMERICAL INTEGRATION OF INTERFACE MODELS

As is usual in structural analyses and necessary in the presence ofconsitutive softening,
the integration ofthe interface law here presented is kinematically driven. Being the situation
in terms of all static and kinematic variables known at a certain time instant 'tm and given
a finite increment of displacement discontinuities 8[U] == [u]n+ I - [u]n between the time
instant Tn and 'tn+ b all other variables are found at time instant Tn+ I through the numerical
integration scheme. Here and in the following a subscript n or n +1 means a quantity
computed at time instant Tn or 'tn+ I respectively, the symbol l\(.) means an increment in
the quantity. in a time interval ['tn, Tn+ d.

5.1. Backward difference integration
The backward difference integration rule is adopted here; this is an implicit scheme

which belongs to the category of return mapping algorithms and is commonly used in
nonlinear computational mechanics [see e.g. Perego (1988) and Comi et al. (1991»).

The numerically integrated version of eqns (2), (8), (27)-(32) reads:

(49)

(50a)

(50b)

(51)

(52)

(53)

(54)
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(55)

(56)

The above relations (49)-(56), together with restrictions introduced in Section 2 on
functions L i represent a nonlinear constitutive law which relates the displacement dis
continuities [u]n+ 1 to tractions tn+ I'

Given an increment of displacement discontinuities Mu] and all quantities at Tn being
known, the solution is found through an elastic prediction phase, a check of consistency
and a plastic-damage corrector phase, following the typical scheme of a return mapping
algorithm:

(I) Elastic predictor (elastic trial response).
A purely elastic response to [u]n+ I = [u]n+A[u] is first computed by considering fixed values
at Tn the variables )., [uJP and dj • This phase consists of simple function evaluations.

(2) Check of consistency.
The plastic-damage condition is checked on the basis of the elastic trial response. If pt:~I!

is less than or equal to zero, then the response in the step is purely elastic and the solution
at Tn+ I is given by the elastic trial response; the process stops. If r;,r~!l is greater than zero,
the response is plastic-damage and a plastic-damage corrector phase is necessary; the
process continues from phase 3.

(3) Plastic-damage corrector.
The process is plastic-damage, hence the solution will give a positive plastic multiplier
increment AA. The system of nonlinear equations (49)-(56) must be satisfied with Fn+ 1 = 0
due to eqns (56) and the fact that AA is strictly positive. This phase consists therefore
of solving the nonlinear system of equations (49)-(55) and (56a) with an equality sign
(Fn+ 1= 0).

The solution of this nonlinear system could be found by using one of the existing
numerical strategies. In the Appendix A.l a solution scheme which decouples the plastic
and the damage part of the constitutive law is proposed and detailed for the case of positive
t 3,,+ I' This scheme has been used for the solution of numerical examples of Section 7.

Remarks
(i) For constitutive models of class b presented in Section 2 (elastic-damage) the

damage corrector phase is straightforward. It can be performed by first computing Xn+ 1

from the consistency condition, recalling that in this case a4 = 0:

Xn+ 1 = jY;:::~-1 (57)

and then obtaining the values of djn +
1

and tin+
1

from eqns (55) and (50). In eqn (57) YaH 1

is computed starting from values of Yin + I given by eqns (51), in which [u]~+ I = [U]n+ I is the
input quantity for the step.

(ii) Particular care should be taken for situations corresponding to critical level of
damage, i.e. when the displacement discontinuities [u] are near to the critical value [u]e.
After the critical situation is reached, the interface is supposed to be completely damaged,
i.e. the adjacent layers in the case of composites are separated. Only the behaviour in
compression gives tractions different from zero (unilateral effect).

5.2. Consistent tangent matrix
A numerical scheme proposed for the integration of a constitutive law is likely to be

accompanied by the computation of the consistent tangent operator (Simo and Taylor,
1985). The use of the consistent tangent operator is important in nonlinear analyses when,
for the solution ofglobal equilibrium, the equilibrium equation is linearized; as an example
consider the Newton-Raphson method for a step-by-step analysis.
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In the present context the consistent tangent operator is the Jacobian of the relation
between tractions and displacement discontinuities, at time instant 'n+ [, as defined by the
numerical integration scheme adopted:

bt = Jb[u). (58)

In eqn (58) J is the consistent tangent 3 x 3 matrix; J has to be computed from the
system of equations (49)-(56) by taking the derivatives of each equation and by dis
tinguishing the cases of elastic unloading and plastic-damage loading. The unilateral effect
introduced in the model also obliges to distinguish cases with positive or negative tractions
in direction 3. In Appendix A2 the case with positive t 3n+

J
is detailed.

6. AN ALGORITHM FOR THE SOLUTION OF A BOUNDARY VALUE PROBLEM IN
THE PRESENCE OF SOFTENING INTERFACES

6.1. Boundary value problem
Consider an elastic body defined by the domain 0 which contains a certain number n

of internal surfaces r j of discontinuity. Each surface is characterized by an interfacial
constitutive law of the kind described in Section 2. The body is submitted to body forces (
in 0 and to surface loading F on the part aA of its external surface; kinematic constraints
u = Uo are imposed on ouO (see Fig. 5). Small strain and displacement theory, isothermal
conditions, no inertia effects will be assumed.

The problem of delamination in composites can be treated with the above schem
atization. The single fibre-reinforced layers can be conceived as purely elastic (the domain
0) and connected by nonlinear interfaces (the discontinuity surfaces r j ). If the body 0 is
supposed to behave nonlinearly (e.g. with a plastic-damage constitutive law), the damage
phenomenon can also involve the layers and thus permit a more realistic idealization.

Define r' as the union of all surfaces r j and 0' == o-r'. The class of displacement
vectors u* which are zero on ouO and regular in 0' (virtual displacements) is named U;
notice that u* (and the real displacements) can be discontinuous on r'.

The boundary value problem in point consists of finding the fields of displacements u
and stresses (1 which satisfy the following relations:

(1) Compatibility.
u is regular in 0' and u = Uo on ouO.

(2) Equilibrium.
for any u* E U:

(59)

(3) Constitutive law.

Fig. 5. A continuum n with discontinuity interfaces rj •
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(1 = Ea(u) in Q', t = A([u], x) on r'. (60)

In eqn (59) (1 is a vector which gathers the six independent components of the symmetric
Cauchy stress tensor; £(u) is a six component vector of strains related to the displacement
field u through the linear differential relations of small strain theory; (1 and £ are defined in
such a way that the scalar product (1T£ equals the scalar product of stress and strain tensors.
Recall that the vector t in eqn (59) is the vector of tractions on surfaces rj , the sign
conventions are the same as defined at the beginning of Section 2 (Fig. 1). Relation (60a)
is the Hooke law for the elastic body, E is a 6 x 6 matrix of elastic moduli; eqn (60b) has
the same meaning of eqn (1).

The nonlinear (due to the interfacial constitutive law) boundary value problem (59)
(60) can be discretized in space by using the compatible finite element (FE) method.
Tne application of the FE method is straightforward, the only nonstandard difficulty is
represented by the second integral in eqn (59), i.e. by the presence of discontinuity surfaces
rio This difficulty can be overcome with the introduction of interfacial finite elements as
already done in the recent literature in particular for composite delamination problems.
With an interface finite element the interpolation of the displacement discontinuity vector
[u] on a generic surface rj is directly derived from the interpolation used for the displacement
field u in the adjacent finite elements (see Fig. 6):

(61)

In the above equation U+ and U- are the nodal degrees of freedom for nodes which
belong to n+ and n_ respectively and are on surface r (Fig. 6); <1)+ and <1)- are interpolation
function matrices. By introducing the above interpolations in eqn (59), the following
equilibrium equation is obtained:

(62)

In eqn (62) K£ is the assembled elastic stiffness matrix for the domain Q; U is the
vector of global degrees of freedom; Htt are Boolean matrices which formally represent
the assemblage for each interfacial element k (Ulnt = Hln1U) ; P is the vector of equivalent
nodal loads and f.1 is a load parameter. The second term in eqn (62) is the internal force
vector deriving from the cohesive interfaces r i .

6.2. An algorithm with local control
The particular difficulties which can be encountered in the numerical solution of

boundary value problems in the presence of softening had already been envisaged in the
literature at the end of the sixties (Maier, 1968), in particular snap-through and snap-back
behaviours can be found. This kind of global behaviour can be tackled by making use of
special algorithms, originally proposed for elastic stability problems, among them in primis

Fig. 6. Finite elements neighbouring a discontinuity interface.
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those ofRiks (1972), Wempner (1971), Crisfield (1981) and Ramm (1981) [see also Crisfield
and Shi (1992) as a review article]. The common idea which characterizes the majority of
these algorithms is that to derive the analysis through an additional condition implying the
control of a quantity which in general is neither a loading parameter nor a displacement.
The choice of an alternative driving quantity can be in general achieved by treating the
loading parameter as a variable in the equilibrium equation and by adding an equation
often called the constraint relationship. The constraint can be of a global kind, as in the
arc-length method (Crisfield, 1981) or of a local one as proposed by de Borst (1987). Chen
and Schreyer (1990) recently proposed to locally control the analysis for softening continua
through a total strain norm in a suitably chosen point.

In the analysis of composite delamination, algorithms of the above kind, with local
control, have recently been used. In the present paper an algorithm is proposed in which
the controlled quantity is a total displacement discontinuity norm in a certain point of an
interface. As an example, this procedure applied to composite delamination in pure mode
I situations reduces to control the opening displacements of the delamination fracture. The
resulting method generalizes the preceding ones used for composite delamination and can
be applied to the analysis of mixed-mode situations and to the analysis of situations in
which more than one delamination fracture propagates.

The response of the elastic body containing a certain number of interfaces is to be
computed in a time interval [0, T]. By choosing convenient instants °= '0, 'j, '2,"" 'n
the time interval is subdivided in time steps~, = 'n+ I-'n' Being the response known at a
time instant Tn, eqn (62) is solved at time instant 'n+' :

In eqns (63) q(Un + ,) can be considered as a known nonlinear function of variables
Un+ I' The dependence ofq on Un+ I is given by eqn (63b), by the finite element interpolation
of interfacial elements and by the numerically integrated interface constitutive law. As seen
in Section 5 the numerical integration procedure for the interface model gives in fact the
values of traction tn+, at a time instant 'n+ I with the situation at 'n being known and the
total displacement discontinuity [u]n+', i.e. the vector Un+, being known. In eqn (63a),
Un + , and fln+' are both considered as variables. Equation (63a) is then to be solved together
with a scalar constraint relationship. The constraint relationship is derived from the local
control of the displacement discontinuity in a suitably chosen point R of an interface Ij.
The chosen point R for the step [Tn, 'n+ ,] is that with the greater value of the multiplier .A.

(a measure of the degree ofdegradation for all the models of Section 2) at instant 'n among
the Gauss points of interface elements which are not already completely damaged. The
variable controlled is a norm of the displacement discontinuity increment d[U]R =
[u]:+ I - [u]: in the point R:

(64)

In the above equation IX is a fixed parameter, c is a 3-components vector of weighting
coefficients. Vector c governs the kind of imposed fracturing process, e.g. for cT = (0, 0, I)
a pure mode I opening situation will be imposed. The choice of c can be automatically
made in the algorithm by considering the results obtained at the end of the last step:

(65)

The constraint (64) can be expressed in terms of the vector Un +, by making use of eqn
(61) and the definition of matrix Hint in eqn (62), hence the computations for each step
consist of the solution of the following equations in the unknowns Un+, and fln+ , :
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. R • R

In eqn (66b) matrix B* has been defined as: B* = BlOt H tnt
• The nonlinear system

(66) is solved iteratively by applying a method of the Newton-Raphson kind. Notice that
eqn (66b) is linear in the unknown Un + h therefore only a linearization of eqn (66a) is
necessary.

The algorithm proposed above has been applied for the solution of numerical examples
for composite delamination problems presented in Section 7. Some details on the iterative
procedure for the solution of system (66) are given in Appendix A.3.

7. NUMERICAL EXAMPLES

In this section some numerical examples will be presented, they are mainly conceived
to:

(1) show the potentiality of the class of interface constitutive models introduced in
Section 2;

(2) clarify the identification procedure proposed with the discussion of Sections 3
and 4;

(3) verify the validity of the numerical integration algorithm described in Section 5 for
the interface constitutive law;

(4) illustrate the behaviour of the algorithm proposed in Section 6.2 for the solution
of the boundary value problem of Section 6.1 ;

(5) apply aU the procedures envisaged to the analysis of composite delamination and
verify the validity of the idealization adopted.

To discuss points (1) and (3) above, the three example models a, b, c of Section 2 are
considered. For values of parameters which give in the three cases the same Critical Energy
Release Rate in modes I, II, III and the same elastic interface stiffnesses, the different
models are numerically integrated under different histories of displacement discontinuities
in pure modes and mixed modes. For the three models the values of interface stiffnesses Kj ,

of parameters OJ and of Critical Energy Release Rates are the following:

K] = K 2 = Kj = K:; = 100000Nmm-3,

0] = 02 = 03 = 0.4 x 10- 3 mm4 N- I,

Gel I = Gelll = 0.8 N mm- I
, Gel = 0.4 N mm- I

•

The other parameters are different for each model and are given below:

-Model a elastic-plastic-softening.

b l = b 2 = 1.024 x 10- 3 mm 4 N- 2, b3 = 0.256 x 10- 3 mm4 N-- 2,

04 = 0 mm 2 N- I
, h = I mm N- I

,

[ude = [U2]e = 0.032 mm, [U3]e = 0.016 mm.

Parameters hi have been computed by applying eqn (44).

-Model b elastic-damage.

YI = Y2 = 0.08111, Y3 = 0.12107,

[ullc = [U2]e = 0.0067 mm, [U3]e = 0.0046 mm.

Parameters Yi have been computed by applying eqn (46).
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-Model c elastic-plastic-damage.

YI = Y2 = 0.83755, Y3 = 1.52603, h = 1 mm N- 1
,

rude = [u2le = 0.0249 mm, [u3le = 0.0139 mm.

Equations (48) relate the values of Ge.. Gel.. Gelll to model parameters.
In Figs 7-9 are compared the results of numerical integration of the three models for

different histories of displacement discontinuities. Figure 7 collects the responses for pure
mode I (displacement discontinuities in direction 3 only). Figure 7(a) shows the applied
displacement discontinuity history corresponding to responses of models a and c reported
in Figs 7(b) and 7(c), respectively. In Figs 7(d, e) are reported the history of applied
displacement discontinuity and the corresponding interface response for model b. The
histories ofloading have been chosen different for models a, c and b in order to better show
the qualitative behaviour of the interface models in all the three cases. In Figs 7(b, c, e) the
unilateral effect is to be remarked, i.e. for negative tractions t3 (compression on the interface)
the behaviour is always unlimitedly elastic and the stiffness remains unchanged. The pres
ence of irreversible displacement discontinuities can be observed in Figs 7(b,c), while the
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Fig. 7. Results of the numerical integration of interface models for pure mode-I loading. (a)
Displacement discontinuity history for models a and c. (b) Model a, elastic-plastic-softening.
response. (c) Model c, elastic-plastic-damage, response. (d) Displacement discontinuity history for

model b. (e) Model b, elastic-damage, response. (Continued overleaf)
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degradation of elastic stiffness in Figs 7(c, e). Notice the coupled effect of stiffness degra
dation and irreversible displacement discontinuities in Fig. 7(c), i.e. for model c the un
loading is elastic with an elastic stiffness which changes while the damage process goes on
and irreversible displacement discontinuities are present The behaviours in pure mode II
(displacement discontinuities in direction I only) are compared in Fig. 8. The applied
displacement discontinuity history is shown in Fig. 8(a), while the corresponding responses
for models a, band c are reported in Figs 8(b, c, d) respectively. Examples of responses in
mixed-mode situations are shown in Fig. 9. The history of displacement discontinuity of
Fig. 9(a) is applied to the three directions i = I, 2, 3, in order to obtain the mixed-mode
responses for the three models reported with a dashed line in Figs 9(b, c, d). For the three
cases a direct comparison is possible with the responses obtained in pure-mode (solid line)
obtained by applying the history of Fig. 9(a) in direction 3 only. In all three cases it can be
observed that the effect of coupled modes accelerates the damage, Le. the critical value of
displacement discontinuity for which the traction is zero is diminished in the case of mixed
modes.

Points 2, 4 and 5 at the beginning of Section 7 are now discussed with reference to the
numerical simulation of a specimen with the shape of a DCB (Fig. 4(a)] under pure mode
I or mixed modes loading conditions. The finite element model of the DCB consists of two
rows of beam elements connected through interfacial elements (Fig. 10); note that in Fig.
10 the nonzero thickness is introduced only for graphical convenience, the coordinates of
nodes for upper and lower beams coincide. For the beam elements plane strain conditions
and displacements fields of Timoshenko type have been used. The nodal degrees of freedom
for beam elements are the displacements U, in the direction parallel to the beam axis, U3

in the direction perpendicular to the beam axis, the rotation 8 and the first derivative U~,

ofdisplacement U3' These degrees of freedom are relative to the mid-plane of the specimen,
i.e. to the inferior part of the upper beam and the superior one of the lower beam.
This particular assumption for the kinematic description of the specimen allows an easier
introduction of interface elements. The interfacial elements connect the adjacent nodes of
the two rows of beam elements; the nodal degrees of freedom for interface are U3, U'3 and
U \. The beam elements are linear elastic, while to the interfacial elements a constitutive law
of the kind of Section 2 is attributed. One end of the structure is built in, on the other
extreme a load is applied as shown in Fig. 10. The spatial integrals are computed by means
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Fig. 8. Results of the numerical integration of interface models for pure mode-II loading. (a)
Displacement discontinuity history for models a, band c. (b) Model a, elastic-plastic-softening,

response. (c) Model b, elastic-damage, response. (d) Model c, elastic~plastic-damage, response.

of a Gaussian quadrature rule. Three Gauss points are considered for each element. In
order to apply the algorithm described in Section 6 the displacement discontinuity vector at
each Gauss point is computed starting from eqn (61), in which $+ and $- are interpolation
functions used for upper and lower beam elements, and U+ and U- are nodal degrees of
freedom used for the interface in the upper and lower beam nodes respectively.

The geometrical data for the first case treated are:

a = 3 mm, b = I mm, s = I mm, I = 20 mm, fJ = rc/2,

where a, b, s and I haye the meaning of Fig. 4(a), angle fJ is defined in Fig. 10. The initial
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response.
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Fig. 10. Finite element scheme for the DeB examples.
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fissure is introduced by giving the interface elements which are involved an elastic behaviour
for compression in direction 3 and no cohesion at all for tension in direction 3 and for
shear. Due to the loading conditions and geometry of the example, the numerical analysis
simulates a pure mode I DCB test. The progression of the fissure results to be controlled
by the increment of displacement discontinuities in direction 3 imposed at each step in the
Gauss point nearest to the crack tip. This Gauss point in fact results to be the one with the
highest value ofmultiplier A. (the most degradated one) among the Gauss points not already
completely damaged. The analyses for this example are made with a mesh which divides
the length of the DCB in 200 elements of decreasing size from the crack tip to the built in
end. The smallest element has a length of0.05 mm. This allows to well compute the tractions
at the crack tip in the first phase of crack propagation. The three interfacial models a, b, c,
defined by the previously given parameters are considered in the analyses (recall that
Gel! = Gelll = 0.8 N mm - 1; Gel = 0.4 N mm- I). The beam elements are considered elastic
with parameters:

Ell = 135000 MPa, G I3 = 5700 MPa,

where E II is the Young modulus in direction I and G13 is the shear modulus for shear in
the plane 1-3. The above data coincide with those of an homogeneized elementary ply of
a T300/914 fibre composite. Each beam can therefore be considered as composed of a lay
up of ten 0.1 mm thickness layers with fibers all directed in direction I, i.e. a 00 /0 0 DCB
test is simulated. The algorithm of Section 6 is applied for the analyses [matrix Q equal to
the consistent tangent matrix evaluated at each iteration. cf Appendix (A3)] ; the parameter
IX is in general taken as equal to about one half of the critical displacement discontinuity
[u]e for the interfacial model chosen.

In Figs 11-13 the results are represented of the analyses made with model b. Figure
(II) represents the distribution of tractions in direction 3 at crack tip for an elastic situation
[Fig. ll(a)] and its evolution until crack propagation [Fig. ll(b)]. The evolution is rep
resented by 13 subsequent curves relative to distributions of tractions at the crack tip; the
12th curve shows that the stresses at the crack tip are zero and therefore crack propagation
starts. In Fig. 12(a) the diagram of load at the extremum of the beam versus the vertical
displacement at the same point is reported; Fig. 12(b) shows the same diagram for the first
steps of the analysis. Figure 12(c) shows the diagram of the compliance C = U31P versus
fissure length computed during the numerical analysis. The comparison between Figs II (b)
and 12(b) shows that in the treated example the fissure starts to propagate when the
maximum load level is reached (the 12th circle on the curve, apart from that on the origin,
which correspond to the 12th curve in Fig. II(b)]. The influence of spatial discretization
can be judged from Fig. 13(a) where the load-displacement diagrams obtained for different
meshes are compared. The meshes differ for the dimension of the smallest elements. Figure
13(b) shows the influence of parameter IX on the global response.

In Fig. 14 two responses obtained by making use of model a with the previously given
parameters are shown, in order to evaluate the influence on the global response of the
interface stiffness K. The load-displacement curves for these two cases are shown in Fig.
14(a), in Fig. 14(b) are represented the uniaxial responses for the corresponding interface
models. The case with higher stiffness results in a more ductile behaviour for the interface
which is reflected in the global nonlinear behaviour shown in Fig. 14(a). It is to be noted
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Fig. 11. Example I, elastic-damage interface model; normal stress at crack tip, (a) Elastic situation
with load P = IN. (b) Evolution of normal stress at crack tip until crack propagation.

that the maximum of the P-U curve and the decreasing part (propagation range) do not
differ at aU in the two cases. Since the interface stiffness depends on the fictitious thickness
e attributed to the interface [eqn (41)], it can be concluded that the value of e doesn't have
a great influence on the global response of the specimen and on the initiation ofpropagation.

A comparison of results obtainable with different interface models is shown in Fig, 15.
In Fig. 15(a) the uniaxial responses in direction 3 of the three interfacial models used are
compared. In Fig. 15(b) a comparison of the global response obtained with the three models
is illustrated. Notice that the responses differ negligibly, a remarkable difference can be
observed only around the maximum load value for model b, this is due to the high value
of the maximum on the diagram t 3- [U3] [Fig. 15(a)] for model b. The fact that the curves
do not differ considerably is due to the choice of interface model parameters which give the
same Critical Energy Release Rate in mode I. As already remarked in Sections 3 and 4, this
is really the crucial parameter which has to be introduced in the interface models. In the
chosen example the monotonically progressing fracturing process doesn't greatly distinguish
among different interface models if they furnish the same Critical Energy Release Rate;
moreover in this case a model which doesn't take into account the behaviour during
unloading would have given the same results. In Fig. 15(c) the differences in global response
for the three models can be appreciated from the unloading paths. These are obtained by
making, during the numerical analysis, some steps with negative values of parameter IX.

The second case treated is that of a DCB specimen with the same geometrical data as
the above one, but subjected to a mixed mode loading. The interface model b has been used
in the analysis (Gell = Gelll = 0.8 N mm- 1

; Gel = 0.4 N mm- I
), with parameters previously
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Fig. 12. Example I, elastic-damage interface model. (a) Load versus displacement. (b) Load versus
displacement for the first 21 steps. (c) Compliance versus fissure length.

defined. The load is obtained with a value of angle f3 in Fig. 10 equal to n/4. In Fig. 16(a)
are shown the diagrams of displacement discontinuities in directions I and 3 (shear and
opening modes) versus the coordinate XI when the fissure is already propagated at about
1.5 mm. The distribution of interfacial stresses t I and t 3 at the same instant is represented
in Fig. 16(b). In Fig. 16(c) the diagram of load component in direction 3 versus the
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Fig. 13. Example I, elastic-damage interface model. (a) Influence of spatial discretization on load
versus displacement response. (b) Influence of control parameter ex on load versus displacement

response.

nodal displacement component in the same direction is represented. Figure (16) shows the
capability of the algorithm to follow situations of mixed mode propagation.

The third case treated is that of a DCB test (f3 = n/2), with geometric dimensions
usually adopted in real tests, which have been taken from Ye (1992). In this reference a
0%° lay up of T300/934 DDS carbon fiber was tested. The geometrical data, the elastic
parameters of homogeneized layers and the Critical Energy Release Rate calculated from
the experiment are reported here below:

a = 30 mm, b = 2.5 mm, S = 6.25 mm, 1= 230 mm,

Ell = 133000 Mpa, GI3 = 4200 Mpa, E 33 = 7700 Mpa,

Gel = 0.643 N mm- I
.

The numerical analysis is done with the purpose of comparing the global response with the
experimental one reported in Ye (1992). The procedure adopted to define the parameters
for the analyses, made with interface models a and b, can be schematized in the following
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Fig. 14. Example I, elastic-plastic-softening interface model. (a) Influence of interface stiffness on
load versus displacement response. (b) Uniaxial responses of the interface model.

steps:

(1) An identification is made for the shear elastic stiffness parameters used for beam
elements in order to obtain the global elastic stiffness of the DeB specimen.

(2) The elastic stiffness parameter K 3 for the interface is computed by applying eqn
(41c) with E 33 given above and e equal to 0.026 mm (about one fifth of a single layer
thickness) .

(3) A tensile strength 130 equal to 60 Mpa is supposed for the interface. This parameter
is used to identify parameter 03 for both models a elastic-plastic-softening and b elastic
damage used in the analysis, by use of formula (43).

(4) For model a the parameter b3 is identified by making use of eqn (44c) with h = 1
and GIc given above. For model b parameter Y3 is identified by applying eqn (46c) with the
same value for GIc •

(5) The dimension of the smallest finite elements used for the spatial discretization of
the beam is taken to be equal to 0.05 mm.

Notice that, being the analysis in pure mode I, only parameters with index 3 are necessary.
The resulting values used in the numerical computations for models a and b are reported
below:

-for both models a and b

Kj = K"3 = 300000 N mm- 3
,

03 = 0.278 X 10- 3 mm 4 N- 2 ;
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Fig. 15. Example I, comparison of different interface models. (a) Uniaxial responses of interfacial
models. (b) Load versus displacement for monotonously progressing fracture. (c) Load versus

displacement for fracture progression with partial unloadings.

-model a

a4 = 0 mm 2 N- ' , h = 1 mm N- ' , b3 = 0.4551 X 10- 3 mm 4 N- 2

-model b

Y3 = 0.06109.

In Fig. l7(a) the diagrams of load versus displacement at the extremum of the beam
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Fig. 16. Example 2. (a) Displacement discontinuities on half beam length. (b) Normal and shear
stresses at crack tip. (c) Vertical load component versus vertical displacement component.

are reported for models a and b. In Fig. 17(b) a numerical analysis made with a coarser
mesh (smallest element with 0.1 mm length) and model b is compared to experimental
results taken from the load-displacement diagram reported in Ye (1992). The numerical
results are in good agreement with the experimental ones; it is worth noticing that the only
information used for identification of the interface model has been Glc•
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Fig. 17. Example 3. (a) Load versus displacement for two interface models. (b) Comparison of
numerical and experimental results derived from Ye (1992).

8. CLOSING REMARKS

(i) The interface models proposed are suitable for mixed mode propagation. Also cyclic
loading conditions can in principle be well simulated, but this requires further study and
comparisons with experimental data. Among the proposed models, the elastic-damage
model of Section 2.2 is the simplest one from a computational point of view. The elastic
plastic-damage model of Section 2.3 appears to be the more adequate for cyclic loading.
The comparison in uniaxial situations can be judged from the numerical results of Section
7, while a more deep analysis is needed in order to compare the behaviour of the models
in mixed-mode situations.

(ii) The identification procedure proposed makes use of the Critical Energy Release
Rates obtained in Fracture tests as the most important parameters for interface models.

(iii) The validity of the schematization introduced for composite delamination has
been confirmed, at least for progressive fracture propagation.

(iv) The algorithm for the numerical integration of interface laws appear to be adequate
to the difficulties involved. A study of convergence of the iterative procedure proposed for
the solution of the nonlinear system has to be made. Comparisons between different
algorithms must be made. The numerical integration of elastic-damage models is straight
forward; this fact represents a great advantage for these kind of models if cyclic behaviour
is not really important.

(v) The algorithm for the solution of the boundary value problem is well suited for the
analysis of fracturing processes, at least for the progression of a single fracture in pure and
mixed modes.
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APPENDIX

A.I. Solution scheme for the plastic-damage corrector phase in the case of t J positive
By eliminating from system (49)-(55) and (56a) (with equality sign) \i~riables [ul~+" Y"+,, X,,+ I' A,,+ 1 and

[u]~+ 1 making use of eqns (49), (51)-(54) and (56a), the following six equation system is obtained:

In eqn (A I) tl,,+ 1 and K; are effective tractions and effective elastic stiffnesses here defined as:

_ tl ~ K, .
t
'
=(I_d;)' K' =(I_d,) 1= 1,2,3.

(AI)

(A2)

(A3)

Note that scalars Y",+ 1 and :1>,. 1 can be con~idered as functions of effective tr~ctions 'i;n+ 1 by ~aking use o~ eqrrs
(A3a) and (29). Hence for given damage vanables d

"
.' eqns (A2) can be conSidered as a nonlmear system m the

unknowns 'il, •• ' The system can be interpreted as a plastic corrector for an effective elastic-plastic inte~race with
elastic stiffnesses K,,,+ 1 where the input quantities are the e.ffective elastic trial displacement discontinuities
(I-d,n +I)[U;]~':', while effective plastic displacement discontinuities (I-d;n+ I)[UI]~+1 are looked for. Equations
(A I )-(A2) can be solved by an iterative procedure in which at each iteration the solution of the nonlinear system
(AI) gives values of ti,,+ 1 for fixed damage variables. A convergence control on the value of damage variables
obtained at two subsequent interations can be used.

A.2. Consistent tangent matrix in the case ofpositive t3,.,
(I) Elastic unloading.

In this case the solution is given by the elastic predictor. The consistent tangent matrix reads:

(A4)

In eqn (A4) I is the 3 x 3 identity matrix; Dn + , and K are 3 x 3 diagonal matrices with the component of principal
diagonal given by di'i;' and Ki respectively (K, Kj); K D is here defined as the secant elastic-damage matrix..

(2) Elastic-plastic-damage loading.
J has to be found by differentiating with respect to variables tn+" dn+I' ;'n+" [u]n+ " [u]~+" the following system
of equations:

Mu]P - r(tn+ "d.+ ,)L\A = 0,

dn+, - LO,n + ,) = o.

(A5a)

(A5b)

(A5c)

(A5d)

System (A5) has been obtained from relations (49)-(56) in the case of plastic-damage loading and for positive
tractions t} . The 3-components vectors rand L gather respectively the terms biti I(I-d; ,)2v"~ and
Li(h(An + ,»:+By computing derivatives of the system (A5) and after some calculatiol{s' the following result is
obtained:

(A6)

(A7)
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(A8)

(A9)

(AIO)

(All)

(AI2)

Equations (A6)-(AI2) give the consistent tangent matrix J as the sum of three terms. The first one is the
matrix for the unloading case (the secant matrix). The second and third terms represent the corrections for the
plastic-damage loading case. Note that if t1.l. goes to the zero matrix A [eqn (AIO») reduces to the identity, vector
rD [eqn (A II») coincides with r, matrix J 2 [eqn (A8») goes to zero and the tangent matrix J reads:

[
I D (OFn+I)T ] Dlim J= I--D(K r+oLK[u)~+I) -,- K.

aA-.n ut n+ 1
(AI3)

The above expression for J coincides with that for the continuum tangent operator which can be obtained
directly from the relations (2), (8) and (27)-(32). It is also worth noticing that J is in the general case nonsymmetric.
When a class of models of the kind of example a in Section 2 is considered (elastic-plastic-softening), the matrix
KD coincides with K, matrix oL goes to zero and the elastic-plastic consistent tangent matrix is recovered from
eqns (A6)-(AI2). The tangent modulus in the case of an elastic-damage class of models (model b in Section 2) is
obtained for vectors rand rD which go to zero. Note that in this last case the consistent tangent matrix given by
eqn (A6) coincides with the continuum, tangent modulus given by eqn (Al3).

A.3. Iterative solution for system (66)
At each iteration U+ I) the equations to solve are (66) and the linearization of (66a) around the estimate at

the preceding iterationj:

q(Uj + I)-J.lj+ ,P ~ q(U)-J.lj+ ,P+Qj(Vj+, - Vj) = 0,

cTB*(Uj+ ,-U.) -Q( = O.

(AI4a)

(AI4b)

In the above equations the step index (n+ I) has been dropped for notation convenience.
Matrix Qj in eqn (AI4a) is used for the linearization and can be chosen in different ways. If Qj coincides

with the tangent matrix of the structure, i.e. Qj = (oq!oU); the Newton-Raphson method is obtained. Qj can
also be chosen equal to the tangent matrix computed at the beginning of the step, i.e. Qj = (oq/oV)~ Vj, or equal
to the secant matrix or even to the initial elastic stiffness matrix. The quadratic asymptotic rate of convergence
of the Newton-Raphson method can be obtained only if the derivative of the function q(U) is computed by
considering the consistent tangent matrix for the numerically integrated constitutive law of the interfaces, derived
in Section 5. For the first iteration of the procedure, use is made of results obtained at the end of the last step.
The iteration procedure is stopped when the following conditions are satisfied:

(AI5)

In eqns (AI5) the 2-norm is inferred, TOLu and TOL. are two tolerance parameters. The above convergence
conditions are equivalent to those proposed by Chen and Schreyer (1990). The first condition (AI5a) controls
the changement of displacements from one iteration to the following, while the second (AI5b) controls the value
of residual forces.

H has to be observed that the first step of the analysis is to be done by following another strategy, for instance
by imposing a value of load parameter J.l which is below the elastic limit.

The value of load parameter J.lj+ I is found after substitution ofVj+ I obtained by the first equation (AI4a) in
the second equation (AI4b):

Vi+1 =Vj+Q;'(Ili+,P-q(Ui )),

cTB*Q; 'q(U) .
J.lj+' = cTB*Qj Ip (;+ I) > I,

Q(+cTB*Q; 'q(U.)
J.lI = cTB*Q. Ip

(AI6a)

(A I6b,c)

To derive eqns (AI6b,c) use has been made of the fact that eqn (AI4) also holds at iterationj > 0 and that
Vj~O = V •.


